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I. Introduction
The first High-Fidelity CFD Verification Workshop will be held in 2024. While its scope has been expanded relative

to its predecessors [1] that focused on high-order CFD methods, its mission is closely aligned with previous workshops:
1) provide an open and impartial forum for evaluating the status of CFD methods in solving a wide range of flow
problems; 2) assess the performance of CFD methods through comparison to production CFD codes widely used in
the aerospace industry with well-defined metrics; 3) support new research in CFD method development by providing
validation cases and aid during development and improvement of codes; and 4) establish best practices for large-scale
simulations. The test suite presented in this manuscript is focused on shock-dominated flows. The individual test
problems have been chosen to reduce the barrier to participation, while still incorporating relevant supersonic and
hypersonic flows.

II. Steady, inviscid, transonic flow: Gaussian bump in a channel
The first test problem is steady, inviscid, transonic flow over a smooth bump; a subsonic version of this problem was

used as a verification case at the 5th International Workshop on High-Order CFD Methods and earlier workshops [1].
The goal of this problem is to assess the ability of CFD methods to preserve consistency and accuracy in the presence of
an attached curved shock. It is also a relatively simple problem with low barrier to participation.

A. Geometry
The geometry of the domain is shown in Figure 1, and the bottom of the channel is located at

𝑦p𝑥q “ 0.0625𝑒´25𝑥2 . (1)

B. Governing equations
The governing equations are the 2D Euler equations with a constant ratio of specific heats 𝛾 “ 1.4. The freestream

Mach number is 𝑀8 “ 0.7. The top and bottom of the channel are both inviscid walls. The left boundary condition is
specified as a subsonic inflow condition corresponding to a freestream temperature 𝑇8 “ 1 and pressure 𝑝8 “ 1{𝛾.
The right boundary condition is specified as a subsonic outflow condition with back pressure 𝑝 “ 𝑝8. The stagnation
enthalpy remains constant throughout the domain with the value given by 𝐻8 “ 2.745.
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Fig. 1 Geometry of Gaussian bump in channel. Boundary conditions: subsonic inflow ( ), slip wall ( ),
and subsonic outflow ( ).

C. Mandatory campaign
All participants will simulate this flow on a sequence of discretizations and report: a succinct description of the

discretization, the number of degrees of freedom, the shock attachment point to the wall, and the 𝐿2 stagnation enthalpy
error

}𝐻 ´ 𝐻8}𝐿2pΩq “

d

ż

Ω

|𝐻 ´ 𝐻8|2 𝑑𝑉, (2)

where Ω Ă R2 is the flow domain and 𝐻 : Ω Ñ R is the pointwise enthalpy from the flow solution.

D. Preliminary results
Preliminary results for this problem were computed using the High-Order Implicit Shock Tracking (HOIST) method

[2, 3] using Roe’s numerical flux on a sequence of unstructured triangular grids with decreasing element sizes for
polynomial degrees 𝑝 “ 1, 2, 3, 4. The coarsest grid is initially generated using DistMesh [4] and subsequently all
high-order nodes were projected onto the curved boundary (Figure 2). Refined meshes are produced by uniformly
refining each triangle into four triangles and projecting all new nodes onto the curved boundary (Table 1). Because
HOIST is a shock tracking method, degrees of freedom for both the grid and flow solution are reported.

Fig. 2 Coarsest mesh used for transonic bump (left) and the corresponding density field and optimized grid for
𝑝 “ 2 HOIST method (right).

2

D
ow

nl
oa

de
d 

by
 A

FR
L

 D
'A

zz
o 

W
ri

gh
t-

Pa
tte

rs
on

 o
n 

Ja
nu

ar
y 

24
, 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

3-
12

42
 



Table 1 Convergence study of HOIST method for transonic bump

ref-lvl 𝑝-order # cells # mesh DoF # solution DoF L2 error shock attachment point
0 1 237 948 2844 1.45e-03 (0.10279225135, 0.04799085075)
1 1 948 3790 11376 3.56e-04 (0.10301295362, 0.04793638605)
2 1 3792 15158 45504 9.43e-05 (0.10285594945, 0.04797513704)
0 2 237 948 5688 3.86e-04 (0.10533751557, 0.04735946775)
1 2 948 3790 22752 4.22e-05 (0.10279591661, 0.04798994669)
2 2 3792 15158 91008 6.45e-06 (0.10285179563, 0.04797616188)
0 3 237 948 9480 3.30e-04 (0.10441521835, 0.04758906991)
1 3 948 3790 37920 2.03e-05 (0.10282109770, 0.04798373520)
0 4 237 948 14220 2.32e-04 (0.10213585482, 0.04815250856)
1 4 948 3790 56880 9.46e-06 (0.10275102462, 0.04800101854)

III. Steady, viscous, transonic flow: Sajben transonic diffuser
The second test problem is viscous flow through the Sajben transonic diffuser. The problem features fully turbulent

flow, a normal shock, and shock-induced flow separation. It is intended to assess the ability of CFD methods to handle
these features in a relatively simple two-dimensional geometry.

A. Geometry and Meshes
The Sajben diffuser geometry is described by Bogar et al. [5] and reproduced in Figure 3. The profile of the upper

wall, for 𝑥 P r´4.04ℎ, 8.65ℎs, is

𝑦p𝑥q “

$

’

’

’

&

’

’

’

%

1.4ℎ ´4.04ℎ ď 𝑥 ă ℓ𝑐

𝑦𝑐p𝑥q ℓ𝑐 ď 𝑥 ă 0
𝑦𝑑p𝑥q 0 ď 𝑥 ă ℓ𝑑

1.5ℎ ℓ𝑑 ă 𝑥 ď 8.65ℎ,

(3)

where
𝑦𝑐p𝑥q “

𝛼𝑐 cosh 𝜁𝑐p𝑥q

p𝛼𝑐 ´ 1q ` cosh 𝜁𝑐p𝑥q
, 𝑦𝑑p𝑥q

𝛼𝑑 cosh 𝜁𝑑p𝑥q

p𝛼𝑑 ´ 1q ` cosh 𝜁𝑑p𝑥q
(4)

and

𝜁𝑐p𝑥q “
𝐶1p𝑥{ℓ𝑐qp1` 𝐶2p𝑥{ℓ𝑐qq𝐶3

p1´ 𝑥{ℓ𝑐q𝐶4
, 𝜁𝑑p𝑥q “

𝐷1p𝑥{ℓq𝑑

p1´ 𝑥{ℓ𝑑q𝐷4
, (5)

with parameters 𝛼𝑐 “ 1.4114, ℓ𝑐 “ ´2.598ℎs, 𝐶1 “ 0.81, 𝐶2 “ 1.0, 𝐶3 “ 0.5, 𝐶4 “ 0.6, 𝛼𝑑 “ 1.5, ℓ𝑑 “ 7.216ℎ,
𝐷1 “ 2.25, 𝐷4 “ 0.6, and ℎ “ 44mm

B. Governing equations
The compressible Navier-Stokes equations should be simulated using the perfect gas assumption (e.g. single species,

constant specific heat) and Sutherland’s Law for viscosity. The flow should be simulated both without a turbulence

´4.04ℎ 0 8.65ℎ
0

1.4ℎ
ℎ

1.5ℎ

Fig. 3 Geometry of Sajben diffuser. Boundary conditions: subsonic inflow ( ), viscous wall ( ), and
subsonic outflow ( ).
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Table 2 Flow conditions for Sajben diffuser problem

Specific heat ratio, 𝛾 1.4
Mach Number, 𝑀8 0.4
Inlet total pressure 19.58 psi
Inlet total temperature 278 K
Outlet static pressure 14.10 psi
Freestream Reynolds Number, Re8 7.0ˆ 105 m´1

Prandtl Number, Pr 0.71

model and with the negative Spalart-Allmaras turbulence model [6]. The flow conditions are shown in Table 2. The
inflow and outflow boundaries can use the condition that is most appropriate for the flow solver used. The wall boundary
condition is an adiabatic, no-slip condition.

C. Mandatory campaign
All participants will simulate this flow on a sequence of discretizations. For each mesh and turbulence model,

participants should report the 𝑥-directed force integrated over the top and bottom walls, the flow separation location,
and the static pressure profile along the top and bottom walls. Furthermore, a succinct description of the numerical
method used should be provided as well as algorithmic details (e.g., how is the flow initialized, if/how is adaptation
incorporated). Finally, the nonlinear residual convergence and work units should be reported.

IV. Steady, viscous, hypersonic flow: HIFiRE-1
The purpose of this case is to evaluate the ability of solvers to predict heating on the surface of a relevant geometry

at an angle of attack in hypersonic flow. The HIFiRE-1 geometry is a blunt sphere-cone with a cylindrical section and a
flare [7].

A. Geometry
The HIFiRE-1 geometry is described in [7] and reproduced in Figure 4.

B. Governing equations
The compressible Navier-Stokes equations should be simulated using the perfect gas assumption (e.g. single species,

constant specific heat) and Sutherland’s Law for viscosity. The flow should be simulated both without a turbulence
model and with the negative Spalart-Allmaras turbulence model[6]. The flow conditions are shown in Table 3. The
inflow and outflow boundaries can use the condition that is most appropriate for the flow solver used. The wall boundary
condition is an isothermal, no-slip condition with a wall temperature ratio given by

𝑇𝑤{𝑇8 “ 1.279, (6)

where 𝑇𝑤 is the isothermal wall temperature and 𝑇8 is the static freestream temperature.

Fig. 4 HIFiRE-1 geometry
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Table 3 Flow conditions for HIFiRE-1 problem

Specific heat ratio, 𝛾 1.4
Mach Number, 𝑀8 7.18
Freestream Reynolds Number, Re8 10.123ˆ 106 m´1

Prandtl Number, Pr 0.72
Angle of attack, 𝛼 2˝

Wall temperature ratio, 𝑇𝑤{𝑇8 1.279

C. Mandatory campaign
All participants will simulate this flow on a sequence of discretizations. For each mesh and turbulence model,

participants should report wall heat flux and pressure profiles. These profiles should be: (a) along the intersection of the
wall and the y-z plane on the windward side, (b) along the intersection of the wall and the y-z plane on the lee side, and
(c) along the intersection of the wall and the x-z plane. Pressure should be non-dimensionalized by 𝑝8 and heat flux
should be non-dimensionalized by 𝜅8𝑇8{𝑟 , where 𝜅8 is the freestream thermal conductivity and 𝑟 “ 0.137275m is the
radius of the cylindrical section. Furthermore, a succinct description of the numerical method used should be provided
as well as algorithmic details (e.g., how is the flow initialized, if/how is adaptation incorporated). Finally, the nonlinear
residual convergence and work units should be reported.

V. Unsteady, inviscid, supersonic flow: shock-vortex interaction
This case was designed to demonstrate a solver’s ability to capture the complex flow phenomena that result from

the interaction of a traversing vortex and a standing shock wave. This case was part of the AIAA High Fidelity CFD
Workshop 2022 and the predecessor 5th International Workshop on High-Order CFD Methods. It is a two-dimensional,
unsteady, inviscid problem. Two flow features are prominent in results from this case: the initial vortex is split into two
distinct vortical structures after passing through the shock, and cylindrical acoustic waves appear downstream of the
stationary shock, centered on the moving vortex. Density contours from example results are shown in Figure 5.

A. Geometry and Meshes
The geometry of the domain is shown in Figure 6. The top and bottom boundaries are slip walls, and the left and right

boundaries are a supersonic source and a subsonic sink, respectively. Meshes will consist of either regular quadrilateral
elements or irregular mixed elements. The names for each mesh will start with RQ for the regular quadrilateral elements
and IM for the irregular mixed elements, and they will end with the reciprocal of the element length scale, e. g., a
regular quadrilateral mesh with elements sized 0.02 units is named RQ50. Q1 CGNS meshes will be provided for RQ50,
RQ100, RQ150, RQ200, RQ250, RQ300, RQ400, and RQ500. GMSH scripts will be provided to create IM meshes as
well as any additional RQ meshes.

B. Governing equations
The two-dimensional Euler equations are employed for a perfect gas with the ratio of specific heats, 𝛾 “ 1.4, and

unit non-dimensionalized gas constant, 𝑅 “ 1. The flow is initialized with a standing shock at location 𝑥 “ 0.5 with
a strength given by the upstream Mach number, 𝑀𝑢 “ 1.5, and a vortex centered at p0.25, 0.5q with 𝑀𝑣 “ 0.9. The
upstream flow quantities are p𝜌, 𝑢, 𝑣, 𝑝q “ p1.0, 1.775, 0.0, 1.0q, outside of the vortex. The downstream properties are
computed using normal shock relations. The vortex angular velocity is given by

𝑣 𝜃 “

$

’

’

&

’

’

%

𝑣𝑚
𝑟
𝑎

𝑟 ď 𝑎

𝑣𝑚
𝑎

𝑎2´𝑏2

´

𝑟 ´ 𝑏2

𝑟

¯

𝑎 ă 𝑟 ď 𝑏

0 𝑟 ą 𝑏

,

where 𝑟 is the radial distance from the vortex center, p𝑎, 𝑏q “ p0.075, 0.175q define the inner and outer regions of the
vortex, and 𝑣𝑚 “ 𝑀𝑣

?
𝛾 is the maximum angular velocity. The following ODE is used to compute the temperature as a
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Fig. 5 Example results showing Schlieren contours at time 𝑡 “ 0.7. [8]

Fig. 6 Geometry for the shock-vortex interaction. Image taken from AIAA High Fidelity CFD Workshop 2022
case description.

6

D
ow

nl
oa

de
d 

by
 A

FR
L

 D
'A

zz
o 

W
ri

gh
t-

Pa
tte

rs
on

 o
n 

Ja
nu

ar
y 

24
, 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

3-
12

42
 



Fig. 7 Data extraction lines for the shock-vortex interaction. Image taken from AIAA High Fidelity CFD
Workshop 2022 case description.

function of radial distance, where 𝑅 is the gas constant,

𝑑𝑇p𝑟q

𝑑𝑟
“

𝛾 ´ 1
𝑅𝛾

𝑣 𝜃p𝑟q2

𝑟
.

Isentropic relations are used to compute the pressure field. A python script will be provided to aid in setting up the
initial conditions.

C. Mandatory campaign
All participants will simulate this flow on a sequence of spatial and temporal discretizations. Participants will

provide a brief summary of their numerical method used as well as algorithmic details. For each spatial and temporal
discretization level, participants will provide the integrated total enthalpy over the domain at time 𝑡 “ 0.7 along with the
data items listed below.
Participants will provide density along three lines, shown in Figure 7, at time 𝑡 “ 0.7. The lines are specified along

𝑦 “ 0.4, 𝑥 “ 0.52, and 𝑥 “ 1.05, and they provide, respectively, a longitudinal view through the standing shock wave
and adjacent to the primary vortex core, a transverse view parallel to and just downstream of the standing shock wave,
and a transverse view through the primary vortex core. The points along each line are specified as follows:

• Line 1: 𝑃𝑖 “ p𝑥𝑖 , 𝛼 ` 𝜖q, where 𝑥𝑖 “ ℎ
2 ` p𝑖 ´ 1q ˆ ℎ, ℎ “ 2

𝑁
, 𝑖 “ 1, ..., 𝑁

• Line 2,3: 𝑃𝑖 “ p𝛽 ` 𝜖, 𝑦𝑖q, where 𝑦𝑖 “ ℎ
2 ` p𝑖 ´ 1q ˆ ℎ, ℎ “ 1

𝑁
, 𝑖 “ 1, ..., 𝑁

where 𝜖 “ 0.0001 is added to avoid overlap with cell interfaces. The 𝛼{𝛽 and 𝑁 values for each line are:
• Line 1: p𝛼, 𝑁q “ p0.4, 8000q
• Line 2: p𝛽, 𝑁q “ p0.52, 4000q
• Line 3: p𝛽, 𝑁q “ p1.05, 4000q
Participants will also provide two contour images of the Schlieren variable at time 𝑡 “ 0.7. This value is defined by

𝑆𝑐ℎ “ log10 p1` ||∇𝜌||q .

Both images will be grayscale and span contour values from 0.05 to 2.4, inclusive. The first image will cover the entire
domain 𝑥 P r0, 2s and 𝑦 P r0, 1s, and the second image will only contain the vortex in the subdomain 𝑥 P r0.9, 1.2s and
𝑦 P r0.33, 0.63s.
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Fig. 8 Sample density and density error results along line 1 at 𝑦 “ 0.4 on each Q1 mesh with SDIRK45 4th-order
time integration and time step 0.001 at time 𝑡 “ 0.7. [8]

D. Preliminary results
Preliminary results are provided from simulations run using the COFFE solver within Kestrel. These results were

originally reported by Holst et al. [8] at the AIAA 2022 Scitech Forum, and more information about the solver and case
set up can be found in the paper.
Density and density error along lines 1, 2, and 3 are shown in Figures 8 to 10 for each of the Q1 RQ meshes. All

cases were run with a time step of Δ𝑡 “ 0.001 and using a 4th-order, 5-stage, singly diagonally implicit Runge-Kutta
method (SDIRK45) for time integration. The plots, particularly Figure 10, depict the final flowfield’s dependence on the
spatial resolution.
Plots of Schlieren contours for each mesh size with the SDIRK45 time integration scheme and time step Δ𝑡 “ 0.001

at time 𝑡 “ 0.7 are shown in Figure 11. The final flowfield’s dependence on spatial resolution is also depicted in these
figures. The coarsest mesh introduces a large amount of dissipation error, which results in an overly diffuse flowfield
where only the strongest features are present. Dissipation error is reduced with mesh refinement, allowing weaker flow
structures to become visible. [8]
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Fig. 9 Sample density and density error results along line 2 at 𝑥 “ 0.52 on each Q1 mesh with SDIRK45
4th-order time integration and time step 0.001 at time 𝑡 “ 0.7. [8]

Fig. 10 Sample density and density error results along line 3 at 𝑥 “ 1.05 on each Q1 mesh with SDIRK45
4th-order time integration and time step 0.001 at time 𝑡 “ 0.7. [8]
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(a) RQ50 (b) RQ100

(c) RQ150 (d) RQ200

(e) RQ250 (f) RQ300

(g) RQ400 (h) RQ500

Fig. 11 Sample Schlieren contours on each Q1 mesh with SDIRK45 4th-order time integration and time step
0.001 at time 𝑡 “ 0.7. [8]
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