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This is an invited paper for the SciTech 2023 special session, High-Fidelity CFD 

Verification Preworkshop. The paper presents three test cases for verification of 

Reynolds-averaged Navier-Stokes solvers. The verification studies focus on a one-

equation Spalart-Allmaras model, SA-neg-QCR2000-R. The test cases are a two-

dimensional subsonic flow around a Joukowski airfoil, a subsonic three-

dimensional flow around an extruded NACA 0012 wing in a tunnel, and a subsonic 

flow around a wing-body configuration developed by Boeing for verification of 

solvers participating in the High-Lift Prediction Workshop. The turbulence-model 

formulation, geometry, flow conditions, grids, and the desired outcome are 

described in detail. Solutions for the test cases computed by established codes are 

shown. 

I. Introduction 

A High-Fidelity Computational Fluid Dynamics Verification Workshop (HFCFDVW) is planned at the 

American Institute of Aeronautics and Astronautics (AIAA) SciTech Forum in 2024 to verify 

computational fluid dynamics (CFD) approaches to simulation of steady and unsteady turbulent flows. 

HFCFDVW is a successor to a series of workshops and special sessions that have been supported by AIAA 

for a number of years. These preceding activities include the High-Fidelity CFD Workshop [1], conducted 

at the AIAA SciTech Forum in 2022, a series of AIAA special sessions and international workshops on 

high-order methods (see, e.g., Refs. [2, 3]), and a series of AIAA special sessions and publications on 

Reynolds-averaged Navier-Stokes (RANS) solver technology [4, 5]. This year, a special session is 

organized at the AIAA SciTech 2023 Forum to lay the groundwork for the HFCFDVW. This special session 

introduces test suites for verification of CFD codes through comparison of simulations conducted by 

different codes using well-defined verification metrics. In distinction from validation studies that focus on 

the ability of model equations to represent correct physical behavior, verification studies focus on 

correctness of implementation of specific models. Four test suites have been identified for verification of 

wall-modeled large-eddy simulations, mesh motion, simulations of shock-dominated flows, and RANS 

simulations of separating flows. The special session is expected to facilitate formation of working groups 

to collaborate during the next year on establishing best verification practices for the test suites. At 

HFCFDVW, each group will report on the verification studies and present findings and recommendations. 

This paper presents three test cases suggested by the HFCFDVW organizing committee for verification 

of RANS solvers. The target model is a one-equation Spalart-Allmaras (SA) model [6] that uses quadratic 

constitutive relation (QCR) [7] and a simple rotation correction proposed in Refs. [8, 9]. The negative 

variant [10] of the SA model is recommended due to its superior numerical behavior. The model is referred 

to as SA-neg-QCR2000-R according to the naming convention of the NASA turbulence-modeling resource 

(TMR) website [11]. The QCR is needed for SA-based RANS simulations of corner flows because normal 

stress differences induce flowfield behavior that cannot be captured with linear eddy-viscosity models that 
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make use of the Boussinesq assumption. The rotation correction designated as –R is a specific modification 

that intends to mitigate generation of spurious eddy viscosity within a mature vortex. In preparation for this 

paper and HFCFDVW, a small group of researchers that included the authors of the SA model, the authors 

of the paper, and some other researchers, discussed clarifications on implementation of the –R correction 

in the positive and negative variants of the SA model. The results of these discussions have been reflected 

on the TMR website and are summarized in the paper. 

The three test cases include a two-dimensional (2D) flow around a Joukowski airfoil, a three-

dimensional (3D) internal flow around an extruded NACA 0012 wing in a tunnel, and a 3D flow around a 

simplified wing-body high-lift common research model (CRM-HL-WB) developed by Boeing for 

verification of CFD solvers applied to high-lift aerodynamics research. In this paper, solutions for each case 

are computed using well established RANS solvers to provide example computations for workshop 

participants. Families of consistently refined unstructured grids have been generated for each case and will 

be available to the community through the HFCFDVW website [12]. To minimize grid effects on solver 

verification, it is recommended to conduct simulations on the grids provided by the workshop. Iterative 

convergence to low (ideally, machine-zero) levels of residuals is expected on all grids.  

The material in the paper is presented in the following order. The RANS equations and the SA-neg-

QCR2000-R turbulence model are described in detail in Section II. Section III briefly introduces solvers 

used for computing test-case solutions. Sections IV, V, and VI describe the three test cases and the 

corresponding solutions. Concluding remarks are given in Section VII.  

II. Reynolds-Averaged Navier-Stokes Equations 

 The three-dimensional compressible unsteady RANS equations are given in Ref. [13]. 

𝜕𝑡𝑸+ 𝜕𝑥𝑭 + 𝜕𝑦𝑮+ 𝜕𝑧𝑯 = 𝟎                                                             (1) 

The vectors 𝑭, 𝑮, and 𝑯 are defined in Eq. 2. 

𝑭 =

(

 
 

𝜌𝑢
𝜌𝑢𝑢 + 𝑝 − 𝜏𝑥𝑥 
𝜌𝑢𝑣 − 𝜏𝑥𝑦 
𝜌𝑢𝑤 − 𝜏𝑥𝑧 

(𝐸 + 𝑝)𝑢 − (𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 +𝑤𝜏𝑥𝑧) + 𝑞𝑥)

 
 

 

𝑮 =

(

 
 

𝜌𝑣
𝜌𝑢𝑣 − 𝜏𝑥𝑦 

𝜌𝑣𝑣 + 𝑝 − 𝜏𝑦𝑦 
𝜌𝑣𝑤 − 𝜏𝑦𝑧

(𝐸 + 𝑝)𝑣 − (𝑢𝜏𝑥𝑦 + 𝑣𝜏𝑦𝑦 +𝑤𝜏𝑦𝑧) + 𝑞𝑦)

 
 

                                            (2) 

𝑯 =

(

 
 

𝜌𝑤
𝜌𝑢𝑤 − 𝜏𝑥𝑧
𝜌𝑣𝑤 − 𝜏𝑦𝑧

𝜌𝑤𝑤 + 𝑝 − 𝜏𝑧𝑧
(𝐸 + 𝑝)𝑤 − (𝑢𝜏𝑥𝑧 + 𝑣𝜏𝑦𝑧 +𝑤𝜏𝑧𝑧) + 𝑞𝑧)

 
 

 

Here, 𝑝 is the static pressure, 𝒖 = (𝑢, 𝑣, 𝑤 )T is the velocity vector, 𝒒 = (𝑞𝑥, 𝑞𝑦, 𝑞𝑧)
T

 is the local heat flux 

vector, and 𝑸 ≡ (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝐸)T is the vector of conserved variables that includes the density 𝜌, the 

momentum 𝜌𝒖 = (𝜌𝑢, 𝜌𝑣, 𝜌𝑤 )T, and the total energy per unit volume 𝐸. The superscript T denotes 

transposition to indicate column vectors. The vector of primitive variables is (𝜌, 𝑢, 𝑣, 𝑤, 𝑝)T. For a perfect 

gas, equations are closed using the relations defined in Eq. 3. 

𝑝 = (𝛾 − 1)(𝐸 −
𝜌

2
(𝑢2 + 𝑣2 +𝑤2)) , 𝑇 = 𝑎2 = 𝛾

𝑝

𝜌
                                    (3) 
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Here, T is the local temperature,  𝑎 is the speed of sound, and 𝛾 = 1.4 is the ratio of specific heats.  

 The viscous fluxes in the RANS equations refer to the diffusion terms including the shear stress tensor 

and the heat flux vector as defined in Eq. 4. 

𝜏𝑥𝑥 =
2

3
(𝜇 + 𝜇𝑡)(2𝜕𝑥𝑢 − 𝜕𝑦𝑣 − 𝜕𝑧𝑤)   

𝜏𝑦𝑦 =
2

3
(𝜇 + 𝜇𝑡)(2𝜕𝑦𝑣 − 𝜕𝑥𝑢 − 𝜕𝑧𝑤)   

𝜏𝑧𝑧 =
2

3
(𝜇 + 𝜇𝑡)(2𝜕𝑧𝑤 − 𝜕𝑥𝑢 − 𝜕𝑦𝑣)  

𝜏𝑦𝑥 = 𝜏𝑥𝑦 = (𝜇 + 𝜇𝑡)(𝜕𝑥𝑣 + 𝜕𝑦𝑢) 

      𝜏𝑧𝑥 = 𝜏𝑥𝑧 = (𝜇 + 𝜇𝑡)(𝜕𝑥𝑤 + 𝜕𝑧𝑢)                                                          (4) 

𝜏𝑧𝑦 = 𝜏𝑦𝑧 = (𝜇 + 𝜇𝑡)(𝜕𝑧𝑣 + 𝜕𝑦𝑤) 

𝑞𝑥 =
1

(𝛾 − 1)
(
𝜇

𝑃𝑟
+
𝜇𝑡
𝑃𝑟𝑡
) 𝜕𝑥𝑇   

𝑞𝑦 =
1

(𝛾 − 1)
(
𝜇

𝑃𝑟
+
𝜇𝑡
𝑃𝑟𝑡
) 𝜕𝑦𝑇   

𝑞𝑧 =
1

(𝛾 − 1)
(
𝜇

𝑃𝑟
+
𝜇𝑡
𝑃𝑟𝑡
) 𝜕𝑧𝑇 

Here, 𝜇 is the dynamic laminar viscosity computed by Sutherland’s law [14], 𝜇𝑡 is the turbulent eddy 

viscosity computed by a turbulence model,  and 𝑃𝑟 = 0.72 and 𝑃𝑟𝑡 = 0.9 are the Prandtl numbers for the 

meanflow and turbulence models, respectively. In Sutherland's law, the local dynamic viscosity, 𝜇, relates 

to the local temperature, 𝑇, through Eq. 5. 

𝜇 =  𝜇𝑟𝑒𝑓 (
𝑇

𝑇𝑟𝑒𝑓
)

3
2

(
𝑇𝑟𝑒𝑓 + 𝑆

∗

𝑇 + 𝑆∗
)                                                            (5) 

Here, 𝑆∗ = 198.6 °R and the reference viscosity,  𝜇𝑟𝑒𝑓 , is assumed at the reference temperature 𝑇𝑟𝑒𝑓. 

Following the formulation presented at the TMR website [11], the standard Spalart-Allmaras (SA) 

turbulence model [6] is given by Eq. 6. 

𝜕𝑡�̂� + 𝒖 ∙ 𝛁�̂� − 𝑐𝑏1(1 − 𝑓𝑡2)�̂��̂� + [𝑐𝑤1𝑓𝑤 −
𝑐𝑏1
𝜅2
𝑓𝑡2] (

�̂�

𝑑
)
2

−
1

𝜎
[𝛁 ∙ ((𝜈 + �̂�)𝛁�̂�) + 𝑐𝑏2(𝛁�̂� ∙ 𝛁�̂�)] = 0 (6) 

Here, 𝛁 ≡ (𝜕𝑥, 𝜕𝑦, 𝜕𝑧)
T

 denotes a formal vector of spatial derivatives. The boundary conditions are defined 

in Eq. 7. 

�̂�𝑤𝑎𝑙𝑙 = 0, �̂�𝑓𝑎𝑟𝑓𝑖𝑒𝑙𝑑 = 3𝜈𝑟𝑒𝑓                                                            (7) 

Here, �̂� is the turbulence variable, 𝑑 is the distance to the nearest wall, including a tangency wall (perfect 

slip inviscid boundary conditions), 𝜈 = 𝜇/𝜌 is the kinematic viscosity, and 𝜈𝑟𝑒𝑓 is the reference kinematic 

viscosity. The turbulent eddy viscosity is computed as in Eq. 8. 

𝜇𝑡 = 𝜌�̂�𝑓𝑣1                                                                                       (8) 

In the original reference [6], the term �̂� is defined as follows. 

�̂� = Ω + S̅, S̅ =
�̂�

𝜅2𝑑2
𝑓𝑣2                                                                 (9) 

Here, Ω is the magnitude of vorticity defined in Eq. 10.  

Ω = √(𝜕𝑦𝑤 − 𝜕𝑧𝑣)
2
+ (𝜕𝑧𝑢 − 𝜕𝑥𝑤)

2 + (𝜕𝑥𝑣 − 𝜕𝑦𝑢)
2
                                          (10) 
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To avoid numerical problems associated with �̂� ≤ 0, Ref. [10] suggests the following modification. 

�̂� = Ω +
Ω(𝑐2

2Ω+ 𝑐3S̅)

(𝑐3 − 2𝑐2)Ω − S̅
     when      S̅ < −𝑐2Ω,     𝑐2 = 0.7, 𝑐3 = 0.9                (11) 

Other terms appearing in Eq. 6 are defined as follows. 

 𝑓𝑣1 =
𝜒3

𝑐𝑣1
3 + 𝜒3

,   𝜒 =
�̂�

𝜈
,   𝑓𝑣2 = 1 −

𝜒

1 + 𝜒𝑓𝑣1
,   𝑓𝑤 = 𝑔 [

1 + 𝑐𝑤3
6

𝑔6 + 𝑐𝑤3
6 ]

1
6

,   𝑔 = 𝑟 + 𝑐𝑤2(𝑟
6 − 𝑟),           

  𝑓𝑡2 = 𝑐𝑡3exp(−𝑐𝑡4𝜒
2),   𝑟 = min [

�̂�

�̂�𝜅2𝑑2
, 10]                                                                    (12) 

The constants are  𝜅 = 0.41,   𝜎 =
2

3
,   𝑐𝑏1 = 0.1355,   𝑐𝑏2 = 0.622,   𝑐𝑡3 = 1.2, 𝑐𝑡4 = 0.5, 𝑐𝑣1 = 7.1,

𝑐𝑤1 =
𝑐𝑏1

𝜅
+
1+𝑐𝑏2

𝜎
,   𝑐𝑤2 = 0.3,  and  𝑐𝑤3 = 2.  

 The standard SA model equation requires �̂� > 0. The SA model extended to negative values of �̂� is 

referred to as the SA-neg model [10]. For negative �̂�, Eq. 13 is solved. 

𝜕𝑡�̂� + 𝒖 ∙ 𝛁�̂� − 𝑐𝑏1(1 − 𝑐𝑡3)Ω�̂� − 𝑐𝑤1 (
�̂�

𝑑
)
2

−
1

𝜎
[𝛁 ∙ ((𝜈 + �̂�𝑓𝑛)𝛁�̂�) + 𝑐𝑏2(𝛁�̂� ∙ 𝛁�̂�)] = 0     (13)  

Function 𝑓𝑛 is defined in Eq. 14. 

𝑓𝑛 =
𝑐𝑛1 + 𝜒

3

𝑐𝑛1 − 𝜒
3
, 𝑐𝑛1 = 16                                                                 (14) 

The SA-neg turbulent eddy viscosity is computed using Eq. 8 when �̂� ≥ 0 and set to zero when �̂� < 0. 

 In the SA-R variant of the turbulence model with a rotational correction [8, 9], the production term of 

the SA model, Eq. 6, is modified, resulting in the model given by Eq. 15. 

                      𝜕𝑡�̂� + 𝒖 ∙ 𝛁�̂� − 𝑐𝑏1(1 − 𝑓𝑡2)(�̂� + crotmin(0, 𝑆 − Ω))�̂� 

+[𝑐𝑤1𝑓𝑤 −
𝑐𝑏1
𝜅2
𝑓𝑡2] (

�̂�

𝑑
)
2

−
1

𝜎
[𝛁 ∙ ((𝜈 + �̂�)𝛁�̂�) + 𝑐𝑏2(𝛁�̂� ∙ 𝛁�̂�)] = 0            (15) 

Here, the strain magnitude, 𝑆, is defined as in Eq. 16. 

𝑆 = √(𝜕𝑦𝑤 + 𝜕𝑧𝑣)
2
+ (𝜕𝑧𝑢 + 𝜕𝑥𝑤)

2 + (𝜕𝑥𝑣 + 𝜕𝑦𝑢)
2
+ 2(𝜕𝑥𝑢)

2 + 2(𝜕𝑦𝑣)
2
+ 2(𝜕𝑧𝑤)

2       (16) 

If the strain magnitude is less than the vorticity magnitude, 𝑆 < Ω, and 𝑐𝑟𝑜𝑡 > 1, the production term may 

become negative and suppress production of eddy viscosity, which is considered as a desirable property in 

case of a solid body rotation.  References [8, 9] recommend 𝑐𝑟𝑜𝑡 = 2. Computations reported in Ref. [15] 

use 𝑐𝑟𝑜𝑡 = 1. Note that all models based on SA-neg [10] benefit from smooth transition through �̂� = 0; 

therefore, it would be preferable to have the production term as 𝑐𝑏1(1 − 𝑐𝑡3)(Ω + 𝑐𝑟𝑜𝑡min(0, 𝑆 − Ω))�̂� in 

the negative branch of the SA-neg-R model. On the other hand, SA-neg does not allow a negative 

production term for �̂� < 0. For the current verification campaign, the negative branch uses the absolute 

value of the preferable production term.  

𝜕𝑡�̂� + 𝒖 ∙ 𝛁�̂� − 𝑐𝑏1(1 − 𝑐𝑡3) |Ω + 𝑐𝑟𝑜𝑡min(0, 𝑆 − Ω)|�̂�                   

−𝑐𝑤1 (
�̂�

𝑑
)
2

−
1

𝜎
[𝛁 ∙ ((𝜈 + �̂�𝑓𝑛)𝛁�̂�) + 𝑐𝑏2(𝛁�̂� ∙ 𝛁�̂�)] = 0                  (17)  

 The mandatory verification is performed for 𝑐𝑟𝑜𝑡 = 1.0. This choice ensures positivity of the production 

term as Ω +min(0, 𝑆 − Ω) > 0 and a smooth transition between the positive and negative branches of the 

SA-neg-R model. However, it is believed that 𝑐𝑟𝑜𝑡 = 1.0 does not sufficiently suppress spurious eddy 

viscosity. The optional computations are suggested for 𝑐𝑟𝑜𝑡 = 2.0. In this scenario, the SA-neg-R 

production term is only C0 continuous for flow regimes where Ω + 𝑐𝑟𝑜𝑡min(0, 𝑆 − Ω) < 0.   
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5 

 

 The turbulent stress tensor, 𝛕𝑡, is a part of the total shear stress tensor defined in Eq. 4. Formally, the 

turbulent stress tensor is defined similar to the total stress tensor, with the total coefficient (𝜇 + 𝜇𝑡) replaced 

as 𝜇𝑡. In the QCR2000 formulation [7], the turbulent stress tensor is corrected using the normalized 

antisymmetric rotation tensor that is defined as follows. 

𝑂𝑥𝑥 = 𝑂𝑦𝑦 = 𝑂𝑧𝑧 = 0,   𝑂𝑥𝑦 = −𝑂𝑦𝑥 =
𝜕𝑦𝑢 − 𝜕𝑥𝑣

𝑏
,   𝑂𝑥𝑧 = −𝑂𝑧𝑥 =

𝜕𝑧𝑢 − 𝜕𝑥𝑤

𝑏
,    

𝑂𝑦𝑧 = −𝑂𝑧𝑦 =
𝜕𝑧𝑣 − 𝜕𝑦𝑤

𝑏
                                                                    (18) 

Here, 𝑏 is the 𝑙2-norm of the velocity gradient tensor defined in Eq. 19. 

𝑏 = √(𝜕𝑥𝑢)
2 + (𝜕𝑦𝑢)

2
+ (𝜕𝑧𝑢)

2 + (𝜕𝑥𝑣)
2 + (𝜕𝑦𝑣)

2
+ (𝜕𝑧𝑣)

2 + (𝜕𝑥𝑤)
2 + (𝜕𝑦𝑤)

2
+ (𝜕𝑧𝑤)

2   (19) 

The rotation tensor is set to be zero when 𝑏 = 0. The QCR turbulent stress tensor is computed as follows 

𝜏𝑡,𝑥𝑥,𝑄𝐶𝑅 = 𝜏𝑡,𝑥𝑥 − 2𝑐𝑐𝑟1(𝑂𝑥𝑦𝜏𝑡,𝑥𝑦 +𝑂𝑥𝑧𝜏𝑡,𝑥𝑧) 

𝜏𝑡,𝑦𝑦,𝑄𝐶𝑅 = 𝜏𝑡,𝑦𝑦 − 2𝑐𝑐𝑟1(𝑂𝑦𝑥𝜏𝑡,𝑦𝑥 + 𝑂𝑦𝑧𝜏𝑡,𝑦𝑧) 

𝜏𝑡,𝑧𝑧,𝑄𝐶𝑅 = 𝜏𝑡,𝑧𝑧 − 2𝑐𝑐𝑟1(𝑂𝑧𝑥𝜏𝑡,𝑧𝑥 + 𝑂𝑧𝑦𝜏𝑡,𝑧𝑦) 

𝜏𝑡,𝑥𝑦,𝑄𝐶𝑅 = 𝜏𝑡,𝑥𝑦 − 𝑐𝑐𝑟1(𝑂𝑥𝑦(𝜏𝑡,𝑦𝑦 − 𝜏𝑡,𝑥𝑥) + 𝑂𝑦𝑧𝜏𝑡,𝑥𝑧 + 𝑂𝑥𝑧𝜏𝑡,𝑦𝑧)                           (20) 

𝜏𝑡,𝑥𝑧,𝑄𝐶𝑅 = 𝜏𝑡,𝑥𝑧 − 𝑐𝑐𝑟1(𝑂𝑥𝑧(𝜏𝑡,𝑧𝑧 − 𝜏𝑡,𝑥𝑥) + 𝑂𝑥𝑦𝜏𝑡,𝑧𝑦 + 𝑂𝑧𝑦𝜏𝑡,𝑥𝑦) 

𝜏𝑡,𝑦𝑧,𝑄𝐶𝑅 = 𝜏𝑡,𝑦𝑧 − 𝑐𝑐𝑟1(𝑂𝑦𝑧(𝜏𝑡,𝑧𝑧 − 𝜏𝑡,𝑦𝑦) + 𝑂𝑦𝑥𝜏𝑡,𝑧𝑥 + 𝑂𝑧𝑥𝜏𝑡,𝑦𝑥) 

𝑐𝑐𝑟1 = 0.3 

The meanflow stress tensor remains unchanged. 

III. Computational Fluid Dynamics Codes 

A. FUN3D 

FUN3D is a node-centered, finite-volume, unstructured-grid RANS solver developed and supported at 

the NASA Langley Research Center; FUN3D is widely used for high-fidelity analysis and adjoint-based 

design of complex turbulent flows [16, 17]. Recently FUN3D has been adapted for NVIDIA GPU 

architectures [18, 19] and demonstrated breakthrough performance for perfect gas and thermochemical 

nonequilibrium flows [20, 21]. FUN3D solves the governing flow equations on mixed-element grids. The 

conservation laws are implemented on control volumes that are constructed around grid points using a 

median-dual partition of the computational domain. The inviscid fluxes are computed using an approximate 

Riemann solver. Roe’s flux-difference splitting scheme [22] is used in the current study. For second-order 

accuracy, the solution values at the edge medians are obtained by a UMUSCL scheme [23, 24], with 

unweighted least-squares gradients computed at the nodes. For this study, the UMUSCL scheme with 𝜅 =
0.5 and no gradient limiting is used for the meanflow equations. In these studies, FUN3D uses a first-order 

nonconservative approximation [10] for the turbulence-model convection term. 

The viscous fluxes are discretized using the Green-Gauss (cell-based) gradients. For tetrahedral grids, 

this approach is equivalent to a finite-element Galerkin-type approximation [25]. On nontetrahedral cells, 

the edge-based gradients are combined with the Green-Gauss gradients [26, 27]; this approach improves 

stability of the viscous operator. The diffusion term in the turbulence model is handled in the same fashion 

as the meanflow viscous terms. The vorticity for the turbulence-model source term is computed using a 

Green-Gauss approximation on dual cells. The boundary conditions involved in the present study include 

subsonic inflow, specified back-pressure outflow, farfield Roe-based, farfield Riemann-invariant-based, 

symmetry, tangency-wall, and strong viscous-wall boundary conditions [16, 28]. 
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B. SANS 

Solution Adaptive Numerical Simulator (SANS) [29], currently under development at the Massachusetts 

Institute of Technology, is a general framework for solving discrete finite-element approximations to 

advection-diffusion-reaction type partial differential equations, such as scalar advection-diffusion, Navier-

Stokes, and RANS equations. A range of finite-element methods are currently implemented in SANS, 

including high-order discontinuous, hybridized discontinuous, and continuous Galerkin finite-element 

methods. The variational multiscale method with discontinuous subscales [30, 31] discretization is used to 

compute all solutions to the RANS equations presented here. Boundary conditions are weakly enforced, 

and forces are computed using the residual balance at the boundary. 

The nonlinear system of equations is solved using pseudotime continuation (PTC) damped Newton’s 

method with a line search to ensure that residuals decrease. The complete linearization of the residual is 

computed via operator overloaded automatic differentiation [32]. The PTC algorithm computes an element 

local time step based on the characteristic speed, element size, and a Courant-Friedrichs-Lewy (CFL) 

number. The inverse CFL is driven toward zero such that a Newton-like convergence rate is recovered. The 

portable, extensible toolkit for scientific computation framework [33-35] is used to solve the linear system 

for each PTC iteration with restarted generalized minimal residual (GMRES) [36] preconditioned with a 

Direct Lower Upper (Direct-LU) factorization. Parallel computations use the restricted additive Schwarz 

preconditioner with three layers of overlap. The Direct-LU preconditioner is applied to each subdomain, 

and restarted GMRES is applied to the global system. Adjoint systems are solved using the same linear 

solver as the primal. All discrete solutions are converged to near machine-zero residuals. 

IV. Test Case 1: Joukowski Airfoil 

This 2D test case is designed as a relatively simple verification case for implementation of the SA-neg-

QCR2000-R RANS equations where theoretically optimal convergence rates for drag coefficients can be 

observed. For adjoint-consistent discretization methods of nominal order (𝑃 + 1), the optimal convergence 

rate of the error in the drag coefficient is expected to be 2𝑃. Without adjoint consistency, the drag error 

convergence rate is expected to be at least 𝑃 + 1.   

The Joukowski airfoil chosen for this test (Fig. 1) is a symmetric aerodynamic analytical shape that 

features a cusped trailing edge. A solution for a high-Reynolds-number flow at zero degrees angle of attack 

is expected to be smooth; although, there is a skin-friction singularity at the trailing edge. The flow 

conditions for this test case are the following: the freestream Mach number is 𝑀∞ = 0.15, the Reynolds 

number is 𝑅𝑒𝑐 = 6 × 10
6 based on the airfoil chord, the angle of attack is 𝛼 = 0°, and the reference 

temperature is 𝑇𝑟𝑒𝑓 =  520 °R. A no-slip adiabatic-wall boundary condition is set at the airfoil, and the far-

field boundary conditions are based on an inviscid characteristic method.    

 

Fig. 1 Joukowski airfoil. 

The family of fixed grids used in this study includes six nested, quadrilateral grids that follow the classic 

meshing guidelines requiring grid lines to be near orthogonal to the geometry and the sizes of neighboring 

elements to be similar. The grids are referenced as Grid 0 to Grid 5. The Joukowski conformal map is used 

to generate grids with nearly orthogonal grid lines. The coarsest Grid 0 is composed of 48 × 16 

quadrilateral cells (48 × 17 grid nodes), the finest Grid 5 grid is composed of 1536 × 512 quadrilateral 

cells (1536 × 513 grid nodes). Three views of Grid 2 are shown in Fig. 2. The computational domain 

extends 100 chord lengths from the airfoil. The grids are stretched toward the viscous surface, toward the 

x-axis (𝑦 = 0) upstream and downstream of the airfoil, and toward the grid line that goes through the 

trailing edge and is orthogonal to the x-axis at the trailing edge. The wake grid opens as the mesh progresses 

aft of the airfoil trailing edge to reduce the maximum cell aspect ratio to approximately 100 near the outflow 

boundary. The grid clustering at the leading edge serves to capture the weak stagnation pressure singularity. 

The grid clustering at the trailing edge is needed to capture the skin-friction singularity. The grid spacing 
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near the leading and trailing edges was repeatedly adjusted to produce grids that facilitate observation of 

expected error rates in the drag output with grid refinement. These geometry and grids have been used for 

verification of SA-neg-QCR2000 model [39]. 

 
(a) Near surface view               (b) Wake view                   (c) Global view 

Fig. 2 Grid 2 for Joukowski airfoil. 

FUN3D solutions are computed on six fixed quadrilateral grids, Grid 0 through Grid 5, and provide 

nominal second-order accuracy, although a first-order approximation to the convection term of the 

turbulence model is used. The specific implementation is based on 3D one-cell-wide hexahedral grids. The 

FUN3D formulation is not adjoint consistent. SANS computes solutions on five fixed grids, Grids 0 through 

Grid 4, and on adapted grids generated by Mesh Optimization via Error Sampling and Synthesis (MOESS) 

tool [37, 38]. The grid adaptation process is governed by the adjoint-based error estimator targeting 

reduction of the error in the drag coefficient. SANS solutions on the fixed grids are computed on truly 2D 

grids, in which each quadrilateral cell is divided into two triangular cells; the number of grid nodes remain 

unchanged. SANS solutions use polynomials of degrees 𝑃 = 1, 2, and 3, and provide nominal second-, 

third-, and fourth-order accuracy, respectively. The SANS formulation is adjoint consistent. All solutions 

reported in this section have the root mean square (rms) norm of the meanflow and turbulence-model 

residuals converged below 10−13.   
The aerodynamic coefficients are computed using the freestream Mach number of 0.15. Table 1 collects 

grid convergence results for the total-drag (𝐶𝐷), pressure-drag (𝐶𝐷𝑝), and viscous-drag (𝐶𝐷𝑣) coefficients 

computed with the SA-neg-QCR2000-R model with 𝐶𝑟𝑜𝑡 = 1.0. Note that 𝐶𝐷 = 𝐶𝐷𝑝 + 𝐶𝐷𝑣. The nominal 

grid spacing is computed as ℎ = 𝑁−1/2, where 𝑁 are the degrees of freedom (DOF). For FUN3D and 

SANS-P1 solutions, DOF are 2D grid points. Higher-order SANS solutions have more DOF on the same 

grids reflecting the increased operation count in computing higher-order residuals. The effect of the rotation 

correction on the solutions is minor; all drag coefficients are close to the corresponding coefficients 

computed with the SA-neg-QCR2000 model [39] for the same geometry, grids, and flow conditions.  

For the error estimate, the “truth” values for the coefficients of total drag, pressure drag, and viscous 

drag are taken as the corresponding coefficients computed from the SANS-P3 solution on the finest adapted 

grid. The error in a coefficient is estimated as the magnitude (absolute value) of the difference between the 

coefficient computed on a given grid and the “truth” value of the coefficient. Note that the uncertainty in 

the truth values is on the order of 10−6; thus, all estimates of errors that are comparable or smaller than the 

uncertainty threshold are not reliable. Nevertheless, estimated errors are plotted below for all solutions for 

completeness.  

Figure 3 shows convergence of the total-drag coefficient (Fig. 3(a)) and the error in the total-drag 

coefficient (Fig. 3(b)). The slopes that represent convergence of second, fourth, and sixth orders are also 

shown in Fig. 3(b). Convergence of the total-drag coefficient shown in Fig. 3(a) is mostly regular and 

monotonic for all solutions that have errors significantly greater than 10−6. The SANS-P1 total drag 

coefficients computed on the fixed grids converge to the truth value from above but cross the truth value 

on Grid 4. In Fig. 3(b), FUN3D shows a convergence rate close to the optimal second-order rate, as 

expected. The SANS-P1 convergence rate apparently exceeds the optimal second-order rate on adapted and 

fixed grids. The SANS-P1, SANS-P2, and SANS-P3 convergence rates are similar on coarser fixed grids 
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and close to the fourth-order rate, which is the optimal rate for P2 solutions. The SANS-P2 and SANS-P3 

convergence rates on adapted grids are not regular but the corresponding total drag coefficients exhibit 

significantly smaller errors per DOF than the coefficients computed on the fixed grids.  

Table 1 Joukowski airfoil: convergence of drag coefficients on fixed grids. 

Solution Grid 𝑁 ℎ = 𝑁−1/2 𝐶𝐷 𝐶𝐷𝑝 𝐶𝐷𝑣 

FUN3D 

Grid 0     816 0.035007 0.061721 0.051628 0.010093 
Grid 1     3,168 0.017767 0.021942 0.014936 0.007006 
Grid 2   12,480 0.008951 0.010441 0.003818 0.006623 
Grid 3   49,536 0.004493 0.008284 0.001656 0.006627 
Grid 4   197,376 0.002251 0.007947 0.001310 0.006638 
Grid 5 787,968 0.001127 0.007891 0.001256 0.006635 

SANS-P1 

Grid 0     816 0.035007 0.051355 0.038668 0.013797 
Grid 1     3,168 0.017767 0.013792 0.006470 0.007342 
Grid 2   12,480 0.008951 0.008581 0.002008 0.006572 
Grid 3   49,536 0.004493 0.007925 0.001382 0.006543 
Grid 4   197,376 0.002251 0.007868 0.001280 0.006588 

SANS-P2 

Grid 0     3,168 0.017767 0.008873 0.002026 0.006850 
Grid 1     12,480 0.008951 0.007916 0.001277 0.006642 
Grid 2   49,536 0.004493 0.007874 0.001244 0.006630 
Grid 3   197,376 0.002251 0.007873 0.001244 0.006629 
Grid 4   787,968 0.001127 0.007873 0.001245 0.006629 

SANS-P3 

Grid 0     7,056 0.011905 0.007910 0.001263 0.006655 
Grid 1     27,936 0.005983 0.007874 0.001243 0.006631 
Grid 2   111,168 0.002999 0.007873 0.001245 0.006629 

    
(a) Total drag                       (b) Error in total drag  

Fig. 3 Joukowski airfoil: grid convergence of total-drag coefficient, 𝑪𝑫,𝒕𝒓𝒖𝒕𝒉 = 𝟎. 𝟎𝟎𝟕𝟖𝟕𝟐. 

Convergence plots of pressure-drag coefficients and the corresponding errors are shown in Fig. 4. The 

FUN3D and all SANS 𝐶𝐷𝑝 coefficients on the fixed grids and the SANS-P1 coefficients on the adapted 

grids converge monotonically. The SANS-P2 and SANS-P3 coefficients oscillate around the truth value on 

the fine adapted grids. The convergence rate of the FUN3D 𝐶𝐷𝑝 coefficient is higher than the optimal 

second-order rate. The SANS-P1 𝐶𝐷𝑝 coefficients converge with the optimal second-order rate on the fixed 

and adapted grids; the coefficients on the adapted grids show much higher accuracy per DOF. The SANS-

P2 convergence rate is super-optimal on the coarse fixed grids before the error approaches the truth-
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uncertainty threshold, the SANS-P3 convergence rate on the fixed grids is less than optimal. The SANS-

P2 and SANS-P3 coefficients on adapted grids converge less regularly but exhibit higher accuracy per 

DOF.   

    
(a) Pressure drag                    (b) Error in pressure drag  

Fig. 4 Joukowski airfoil: grid convergence of pressure drag coefficient, 𝑪𝑫𝒑,𝒕𝒓𝒖𝒕𝒉 = 𝟎. 𝟎𝟎𝟏𝟐𝟒𝟒. 

Convergence plots of viscous-drag coefficients and the corresponding errors are shown in Fig. 5. 

Convergence of FUN3D and SANS-P1 𝐶𝐷𝑣 coefficients is highly erratic and nonmonotonic, but, on 

average, the convergence rates are close to the optimal second-order rate. The SANS-P2 and SANS-P3 

coefficients converge monotonically on the fixed grids and show very similar convergence rates that are 

close to the fourth-order rate before the errors approach the uncertainty threshold. Similar to other drag 

coefficients, the SANS-P2 and SANS-P3 𝐶𝐷𝑣 coefficients on adapted grids converge less regularly but 

exhibit higher accuracy per DOF.   

    
(a) Viscous drag                  (b) Error in viscous drag  

Fig. 5 Joukowski airfoil: grid convergence of viscous drag coefficient, 𝑪𝑫𝒗,𝒕𝒓𝒖𝒕𝒉 = 𝟎. 𝟎𝟎𝟔𝟔𝟐𝟕. 
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V. Test Case 2: Extruded NACA 0012 Wing in Tunnel 

A. Geometry, Flow, and Boundary Conditions 

The test case considers a separated subsonic flow around a 3D configuration that represents an NACA 

0012 wing extruded from a wall of a tunnel with a rectangular cross-section. The model is similar to the 

one considered in Ref. [8]. The rectangular wing has a span of 0.75 and a constant cross-section in the shape 

of the NACA 0012 airfoil with a sharp trailing edge and unit chord. The wing has a rounded tip. The tunnel 

test section has unit width, height of  
2

3
, and length of 3. The wing is mounted on the test-section wall 

corresponding to 𝑦 = 0 with pitch angle of 10 degrees; the opposite wall is located at 𝑦 = −1. The quarter-

chord location of the root airfoil corresponds to 𝑥 = 0. The limits of the 𝑥- and 𝑧-coordinates of the tunnel 

test section are −1 ≤ 𝑥 ≤ 2 and −
1

3
≤ 𝑧 ≤

1

3
, respectively. Comparing to Ref. [8], the 𝑥 range has been 

increased.  

The inflow conditions are Mach number of 0.2, Reynolds number of 4.6 × 106 based on the unit length, 

and an angle of attack of 0 degrees with respect to the tunnel. The reference temperature is 𝑇𝑟𝑒𝑓 = 521 °R. 

No-slip wall boundary conditions are assigned to the wing surface and the test section of the tunnel. 

Upstream and downstream of the test section, extensions with tangency-wall (perfect slip) boundary 

conditions are added. The upstream extension,  −2 ≤ 𝑥 < −1, has the same rectangular cross-section as 

the test section.  For meanflow, subsonic inflow boundary conditions are specified at 𝑥 = −2, where the 

ratio of the total pressure to the reference pressure is set to 1.02828 (based on the Mach number of 0.2), the 

ratio of the total temperature to the reference temperature is set to 1.008, the flow angle is set to zero, and 

the velocity magnitude is extrapolated from the interior. The downstream tangency-wall extension section 

narrows over 2 < 𝑥 ≤ 6.5 to a rectangular cross-section of width 0.9 and height 0.6 centered at 𝑧 = 0. This 

converging section is needed to increase the flow speed and prevent reversed flow at the outflow boundary 

at 𝑥 = 6.5, where the ratio of the back pressure to the reference pressure is set to 1.0 and all other solution 

quantities are extrapolated from the interior. The distance function used in the turbulence model is 

computed from the closest wall, either no-slip wall or tangency wall. The turbulence variable is set to zero 

on all walls, to the freestream ratio at the inflow boundary, and extrapolated from the interior at the outflow 

boundary. Figure 6 shows a global view of the computational geometry and a view of the wing inside the 

tunnel test section. The blue and grey colors indicate no-slip and tangency wall boundaries, respectively; 

the red and green colors indicate the inflow and outflow boundaries, respectively.  

 
(a) Global view of geometry                                   (b) Wing in test section         

Fig. 6 Extruded NACA 0012 wing: surface grids. 
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Figure 7 shows the solution Q-criterion isosurface colored by the vorticity magnitude contours. A strong 

tip vortex and geometrical features associated with corners and interfaces between surfaces with different 

boundary conditions are highlighted. 

 

Fig. 7 Extruded NACA 0012 wing: vorticity contours.  

B. Grids 

A family of nine unstructured grids has been generated by Cadence® software Pointwise† and uses Glyph 

script package GeomToMesh [40]. The grids are generated by a consistent coarsening/refinement of the 

baseline grid that is tagged as Grid 1.0. The grid tag indicates the intended scaling factor of the grid edges. 

For example, the edges of Grid 0.5 are intended to be two times longer and the edges of Grid 2.0 are 

intended to be two times shorter than the edges of the baseline Grid 1.0. The Pointwise grids are referred 

to as fixed grids to distinguish from the adapted grids that are also used in the study. The grid generation 

process strictly follows the best practices in generation of grid families that provide user-specified 

resolution of all geometrical features and maintain smoothness of the surface and volume grids. The 

coarsest Grid 0.5 has 2.6 million grid points; the finest Grid 2.5 has 90 million grid points. Table 4 shows 

grid statistics. 

Table 4 Extruded NACA 0012 wing: statistics of fixed grids. 

Grid tag    Tetrahedra        Prisms         Pyramids     Hexahedra      Points 

0.50 1,621,703 66,678 89,813 2,263,869 2,618,268 

0.75 5,783,545 102,108 161,541 4,812,270 5,907,447 

1.00  14,405,654 137,367 253,387 8,317,833 10,891,035 

1.25 29,147,202 175,130 366,488 12,684,582 17,741,411 

1.50 51,271,350 218,680 503,967 17,912,051 26,667,090 

1.75 82,717,090 271,014 666,375 24,252,915 38,234,981 

2.00 125,170,334 326,234 841,549 31,460,819 52,458,483 

2.25 180,254,204 363,357 1,039,284 39,541,502 69,604,505 

2.50 250,206,779 417,605 1,256,432 48,478,126 90,023,530 

C. Solutions 

FUN3D solutions are computed on all nine fixed grids. Note the importance of high precision in 

representation of the ratio of the total pressure to the reference pressure (1.02828) and the ratio of the total 

                                                 
† http://www.pointwise.com,  accessed 11/21/2022 
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temperature to the reference temperature (1.008). Rounding the ratios to fewer significant digits (1.03 and 

1.01, respectively) resulted in drag variation on the order of several dozens of counts. SANS computes P=1 

solutions on adapted grids generated by MOESS. All solutions reported in this section have the rms norm 

of the meanflow and turbulence-model residuals converged below 10−10, which is the machine-zero level 

on the fine fixed grids. The aerodynamic coefficients are computed using reference area of 0.75 and Mach 

number of 0.2. Grid convergence of the lift and drag coefficients is shown in Fig. 8. The characteristic mesh 

size is computed as h = 𝑁−1 3⁄ , where 𝑁 is the number of grid points. The aerodynamic coefficients are 

integrated over all no-slip walls, including the surfaces of the tunnel test section. 

 
                      (a) Lift                                                                         (b) Drag 

Fig. 8 Extruded NACA 0012 wing: grid convergence of aerodynamic coefficients.  

Both lift and drag coefficients are converging but have not grid converged yet. Although the lift 

coefficients computed by FUN3D on the currently finest fixed grid and by SANS on the currently finest  

adapted grid differ by less than 1.5%, the coefficients have not settled and show a visible variation with 

grid refinement. The grid convergence of the lift coefficient is not monotonic. The drag coefficients 

converge monotonically but also have not settled. The drag coefficients computed by FUN3D and SANS 

appear heading to a similar limit with grid refinement. The difference between FUN3D and SANS 

coefficients computed on the currently finest grids is about 14 counts. Finer grids are needed to confidently 

establish the lift and drag coefficients. 

VI. Test Case 3: Simplified High-Lift Wing-Body Common Research Model 

A. Geometry, Flow, and Boundary Conditions 

The test case considers a semispan high-lift configuration that is designated as CRM-HL-WB. CRM-

HL-WB is the simplest configuration in the family of standard high-lift geometries designed for studying 

aerodynamic phenomena associated with high-lift flow regimes. The original NASA high-lift common 

research model (CRM-HL) [41] is a representative high-lift configuration used in the 4th High-Lift 

Prediction Workshop (HLPW) [42]. The CRM-HL model is a complex configuration that features fuselage, 

wing, nacelle, pylon, leading-edge slats with under-slat wings, trailing-edge flaps, horizontal tail, main 

landing gear, and aileron. The CRM-HL-WB model considered here is a simplified version of CRM-HL 

that is designed for verification of solvers participating in HLPW. The CRM-HL-WB model has similar 

fuselage and high-lift wing geometries as the CRM-HL model but it is stripped of all other geometric 

features. The model has wing semispan of 1156.75 in. The wing has a thin blunt trailing edge and a rounded 

tip cap. The mean aerodynamic chord (MAC) is 275.8 in. The reference area is 297,360.0 in2. The entire 
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computational domain is a rectangular cuboid with dimensions −65,000 ≤ 𝑥 ≤ 65,000;  0 ≤ 𝑦 ≤ 65,000; 
−65,000 ≤ 𝑧 ≤ 65,000. The computational domain and the wing-body geometry are illustrated in Fig. 9.   

                

        (a) Global view of computational grid                    (b) Surface grid and symmetry plane 

Fig. 9 CRM-HL-WB: grid convergence of aerodynamic coefficients.  

The freestream flow conditions are Mach number of 0.2, Reynolds number of 5.6 × 106 based on the 

MAC, and an angle of attack of 11 degrees. The reference temperature is 𝑇𝑟𝑒𝑓 = 521 °R. The no-slip 

boundary condition is assigned to the wing and fuselage surface. Symmetry is specified at the 𝑦 = 0 plane. 

The farfield boundary conditions based on Riemann invariants are assigned at all other boundaries of the 

computational domain. For the current verification studies, the target characteristics are grid convergence 

of lift and drag coefficients. 

B. Grids 

A family of seven unstructured mixed-element grids has been generated by experts using the Pointwise 

Glyph script package GeomToMesh [40] and the best grid-generation practices. The grids are parametrized 

by the number of surface elements placed across the thin blunt trailing edge of the wing; this number is 

reflected in the grid tag. The coarsest grid, Grid 1v, has a single element across the trailing edge. Finer grids 

place multiple elements across the trailing edge, and all grid elements are scaled accordingly. Table 5 shows 

the grid statistics. The grids are referred to as fixed grids to distinguish them from the adapted grids that 

will be used later. Figure 9 shows the coarsest Grid 1v. 

Table 5 CRM-HL-WB: statistics of fixed grids. 

Grid tag Tetrahedra Prisms Pyramids Points 

1v 1,050,501 1,509,398 21,289 956,070 

3v 3,522,591 9,209,000 72,125 5,275,061 

5v 8,103,392 27,858,957 126,162 15,439,756 

7v 15,483,899 62,266,147 233,318 33,980,621 

9v 26,206,961 117,276,602 382,315 63,404,323 

11v 41,131,004 198,147,783 569,730 106,478,104 

C. Solutions 

Only FUN3D solutions have been computed on the fixed grids. Solutions computed on grids 1v to 7v have 

the rms norm of the meanflow and turbulence-model residuals converged below 10−9; the solutions 

computed on grid 9v and 11v converged to the rms residual norm of 10−8, which is close to the machine 

zero on these grids. The surface pressure contours of the solution computed on Grid 7v are shown in Fig. 
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10. The aerodynamic coefficients are computed using the freestream Mach number of 0.2. Grid 

convergence of the lift and drag coefficients is shown in Fig. 11. The characteristic mesh size is computed 

as h = 𝑁−1 3⁄ . Both the aerodynamic coefficients appear to converge with grid refinement, but have not 

converged yet. Finer grids are needed to observe grid converged aerodynamic coefficients. 

 

Fig. 10 CRM-HL-WB: surface pressure contours.  

 

  

                         (a) Lift                                                                      (b) Drag 

Fig. 11 CRM-HL-WB: grid convergence of aerodynamic coefficients.  

VII. Concluding Remarks 

In preparation for High-Fidelity Computational Fluid Dynamics (CFD) Verification Workshop 

(HFCFDVW), three test cases are presented for a suite of verification cases for Reynolds-averaged Navier-

Stokes (RANS) solvers with a nonlinear Spalart-Allmaras (SA-[neg]-QCR2000-R) turbulence model. This 

model accounts for anisotropy of turbulence stresses and can predict secondary recirculation in turbulent 

corner flows. This recirculation cannot be captured with linear eddy-viscosity models based on the 

Boussinesq assumption. The simple rotation correction (designated as –R) is used to mitigate generation of 

spurious eddy viscosity within vortices. A weak rotation correction corresponding to 𝐶𝑟𝑜𝑡 = 1.0 is chosen 

for the mandatory verification campaign. A more aggressive correction corresponding to 𝐶𝑟𝑜𝑡 = 2.0 is 
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suggested as an option. The formulation that is compatible with the SA-neg version of the turbulence model 

has been presented in detail. The SA-neg extension is often essential for achieving converged solutions on 

complex grids.  

The verification test cases include (1) a subsonic two-dimensional (2D) flow around a Joukowski airfoil, 

(2) a three-dimensional (3D) subsonic separated flow around an extruded NACA 0012 wing in a tunnel, 

and (3) a 3D subsonic separated flow around a Boeing high-lift common research model (CRM) that is 

intended for verification of solvers participating in the high-lift prediction workshop. Two well-established 

RANS solvers have been used to provide solutions for these test cases: FUN3D is a NASA unstructured-

grid node-centered finite-volume solver and SANS is a high-order finite-element solver developed at the 

Massachusetts Institute of Technology. All solutions are computed for 𝐶𝑟𝑜𝑡 = 1.0. 

The Joukowski-airfoil test case is a simple verification case designed to demonstrate the optimal 

convergence rate for high-order solvers with and without adjoint-consistent discretizations. A family of 

uniformly-refined nested quadrilateral grids has been generated for the study. The finest grid in the family 

includes more than 3 million grid nodes. Seven different types of solutions have been computed. FUN3D 

solutions computed on the expert generated fixed grids are nominally second-order accurate. SANS has 

provided three adjoint-consistent discretizations based on polynomials of degree 𝑃 = 1, 2, and 3.  The 

optimal convergence rate for adjoint-consistent discretizations is 2P. The SANS solutions have been 

computed on the fixed grids and on adapted grids governed by the adjoint-based estimator of the error in 

the total drag coefficient.  

An internal flow around an extruded NACA 0012 wing mounted on a tunnel wall is chosen as a medium 

complexity verification case. This case features a simple wing in a tunnel that produces a tip vortex. A 

similar geometry was used in the original paper that introduced the –R correction. A family of nine fixed 

unstructured grids has been generated by experts for this study. The grid complexity ranges from 2 million 

grid points to 90 million grid points. FUN3D has computed solutions on the fixed grids. SANS-P1 solutions 

have been computed on adapted grids. All solutions converged to machine zero residuals. Lift and drag 

coefficients computed by the two codes are close to each other on the corresponding finest grids, but the 

grid converged values of the aerodynamic coefficients have not been established yet. Finer grids are needed 

to compute lift and drag with a better accuracy. This verification exercise has helped to establish sensitivity 

of the drag coefficient to the precision of the total pressure and total temperature used in the formulation of 

the inflow boundary conditions.  

An external flow around a wing-body common research model (CRM-HL-WB) that is closely related 

to the high-lift common research model (CRM-HL) used in the 4th High-Lift Prediction Workshop 

represents a challenging verification case. CRM-HL-WB was designed by Boeing for verification of solvers 

participating in future high-left prediction workshops. Seven grids have been generated by experts for this 

case. The coarsest grid includes 956 thousand grid points; the finest grid includes 106 million grid points. 

FUN3D solutions have been computed on the fixed grids. The lift and drag coefficients computed from 

these solutions approach but have not achieved grid convergence. Finer grids and solutions computed by 

other solvers are needed to confidently establish grid converged values of the aerodynamic coefficients. 

The presented test cases have been suggested to facilitate organization of a working group that will 

include prospective HFCFDVW participants interested in verification of their RANS solvers. The group 

will work during the next year to develop best practices for verification of practical RANS solvers. The 

final recommendations will be reported at the HFCFDVW sessions and disseminated in subsequent 

publications.  
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